New Laptop BatteriesBattery Part NumberDynabook SeriesEquium SeriesMini Notebook SeriesPortege SeriesQosmio SeriesSatellite SeriesTecra Series

How to repair a laptop battery

Many batteries for power tools and other industrial devices can be repaired. Getting a nickel-based cell for a replacement is relatively easy, finding the correct Li-ion cell is more difficult. Cell matching is important (see Chapter 8, “Cell Matching, Balancing,” on page 179), and when repairing a Li-ion pack make certain that each cell is properly connected to a protection circuit.

Terminal Connection of a Laptop Battery
The typical SMBus battery has five or more battery connections consisting of positive and negative battery terminals, thermistor, clock and data. The connections are often unmarked; however, the positive and negative are commonly located at the outer edges of the connector and the inner contacts accommodate the clock and data. (The one-wire system combines clock and data.) For safety reasons, a separate thermistor wire is brought to the outside. Figure 1 illustrates a battery with six connections.

terminal connection of a laptop battery Figure 1: Terminal connection of a typical laptop battery
The positive and negative terminals are usually placed on the outside; no norm exists on the arrangement of the other contacts.

Courtesy of Cadex
Some toshiba laptop batteries are equipped with a solid-state switch that is normally in the “off” position and no voltage is present on the battery terminals; connecting the switch terminal to ground often turns the battery on. If this does not work, the pack may need a proprietary code for activation, and battery manufacturers keep these codes a well-guarded secret.

How can you find the correct terminals? Use a voltmeter to locate the positive and negative battery terminals and establish the polarity. If no voltage is available, a solid-state switch in the “off” position may need activating. Connecting the voltmeter to the outer terminals, take a 100-Ohm resistor (other values may also work), tie one end to ground, and with the other end touch each terminal while observing the voltmeter. If no voltage appears, the battery may be dead or the pack will require a security code. The 100-Ohm resistor is low enough to engage a digital circuit and high enough to protect the battery against a possible electrical short.

Establishing the connection to the battery terminals should now enable charging. If the charge current stops after 30 seconds, an activation code may be required, and this is often difficult if not impossible to obtain.

Some battery manufacturers add an end-of-battery-life switch that turns the battery off when reaching a certain age or cycle count. Manufacturers argue that customer satisfaction and safety can only be guaranteed by regularly replacing the battery. Such a policy tends to satisfy the manufacturer more than the user, and newer batteries do not include this feature.

If at all possible, connect the thermistor during charging and discharging to protect the battery against possible overheating. Use an ohmmeter to locate the internal thermistor. The most common thermistors are 10 Kilo Ohm NTC, which reads 10kΩ at 20°C (68°F). NTC stands for negative temperature coefficient, meaning that the resistance decreases with rising temperature. In comparison, a positive temperature coefficient (PTC) causes the resistance to increase. Warming the battery with your hand may be sufficient to detect a small change in resistor value when looking for the correct terminal on the battery.

Repairing a Smart Battery
The smart battery consists of two parts, the chemical cells and the digital circuit. If the cells are weak, cell replacement makes economic sense. While nickel-based cells are readily available, lithium-ion cells are commonly not sold over the counter, and most manufacturers only offer them to authorized pack assemblers. This precaution is understandable given liability issues. Always use the same chemistry; the mAh rating may vary.

A laptop pa3480u-1brs Battery may have only one weak cell, and the success rate of replacing that cell depends on the ability to match it with the others. As previously discussed, all cells in a pack must have a similar capacity because an imbalance shortens the life of the pack. Furthermore, the state-of-charge of all cells being charged for the first time should have a similar charge level, and the open-circuit voltages should be within 10 percent of each other. Welding the cells is the only reliable way to get dependable connection. Limit the heat transfer to the cells during welding to prevent excess heat buildup.

In some cases the chemical battery can be restored, but the fuel gauge might not work, is inaccurate, or will provide wrong information. After repackaging, the battery may need some sort of initialization/calibration process. Simply charging and discharging the pack to reset the flags might do the trick. A term “flag” is a measuring point to mark and record an event.

The circuits of some smart batteries must be kept alive during cell replacement. Disconnecting the voltage for only a fraction of a second can erase vital data in the memory. The lost data could contain the resistor value of the digitized shunt that is responsible for the coulomb counter. Some integrated circuits (IC) responsible for fuel gauge function have wires going to each cell, and the sequence of assembly must to be done in the correct order.

To assure continued operation when changing the cells, supply a secondary voltage through a 100-Ohm resistor to the circuit before disconnection and remove the supply only after the circuit receives voltage again from the new cells. Cell replacement of a smart battery has a parallel with open-heart surgery, where doctors must keep all organs of the patient alive.

Anyone repairing an SMBus battery needs to be aware of compliance issues. Unlike other tightly regulated standards, the SMBus allows some variations, and this can cause problems when matching battery packs with existing chargers. The repaired SMBus battery should be checked for compatibility before use. More information on SMBus is available on and

Simple Guidelines when Repairing Battery Packs

1.Only connect cells that are matched and have the identical state-of-charge. Do not connect cells of different chemistry, age or capacity.
2.Never charge or discharge Li-ion batteries without a working protection circuit unattended. Each cell must be monitored individually.
3.Include a temperature sensor that disrupts the current on high heat.
4.Pay special attention when using an unknown brand of cells. Some may not contain a high level of intrinsic safety features.
5.Li-ion is sensitive to reverse polarization. Observe correct polarity.
6.Do not charge a Li-ion battery that exhibits physical damage or has dwelled at a voltage of less than 1.5V/cell.
7.When repairing Li-ion, assure that each cell is connected to a protection circuit.

Why Buy Batteries From Us
  1. Brand New Toshiba Laptop Batteries!
  2. 1 Year Warranty, 30 Days Money Back Guarantee!
  3. Focus On Quality, Reasonable Price!
  4. Our Checkout Process is 100% Secure!
  5. Packages Arrive Safely!
  6. Excellent After-Sales Service!
  7. Worry-Free, Enjoy Shopping Here!
focus on quality
Best Sellers Laptop Batteries
Battery Tips